Математика Курсовая по Термеху Примеры решения задач Интеграл Физика Атомная физика Контрольная по физике Электроника Электротехника Электроэнергетика Тепловая и атомная энергетика Контрольная Школы дизайна Дизайн квартир Чертежи

Курсовые по Термеху и Сопромату

Проекция силы на ось

Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников в большинстве случаев сопряжено с громоздкими построениями. Более общим и универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями. Осью называют прямую линию, которой приписано определенное направление. Проекция вектора на ось является скалярной величиной, которая определяется отрезком оси, отсекаемым перпендикулярами, опущенными на нее из начала и конца вектора.

Проекция вектора считается положительной (+), если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (—), если направление от начала проекции к ее концу противоположно положительному направлению оси. Кулачковые механизмы. Кулачковым называется механизм, который содержит два основных звена: кулачок и толкатель, образующих высшую кинематическую пару. Кулачковые механизмы нашли широкое применение в системах газораспределения ДВС, в системах управления электроцепей в вагонах метрополитена (контроллеры).

Лекции по сопромату для студентов строительных специальностей Правило П. Верещагина На практике часто встречаются случаи, когда на отдельных участках стержни имеют одинаковые физические и геометрические параметры, а одна из подынтегральных функций изменяется линейно.

Рассмотрим ряд случаев проецирования сил на ось:

1. Вектор силы  (рис. 12, а) составляет с положительным направлением оси х острый угол . Чтобы найти проекцию, из начала конца вектора силы опускаем перпендикуляры на ось х; получаем

.  (4)

Основные понятия и аксиомы статики

В механике изучают законы взаимодействия и движения материальных тел. Механическим движением называют происходящее с течением времени изменение положения тел или точек в пространстве. Статика основана на аксиомах, вытекающих из опыта и принимаемых без доказательств.

Третья аксиома служит основой для преобразования сил. Не нарушая механического состояния абсолютно твердого тела, к нему можно приложить или отбросить от него уравновешенную систему сил.

Пятая аксиома устанавливает, что в природе не может быть одностороннего действия силы. При взаимодействии тел всякому действию соответствует равное и противоположно направленное противодействие.

Плоская система сходящихся сил Геометрический метод сложения сил, приложенных в одной точке Силы называют сходящимися, если их линии действия пересекаются в одной точке. Различают плоскую систему сходящихся сил, когда линии действия всех данных сил лежат в одной плоскости, и пространственную систему сходящихся сил, когда линии действия сил лежат в разных плоскостях.

Проекция векторной суммы на ось

Уравнения равновесия плоской системы сходящихся сил Сходящаяся система сил находится в равновесии в случае замкнутости силового многоугольника. Равнодействующая при этом равна нулю (). Проекции равнодействующей системы сходящихся сил на координатные оси равны суммам проекций составляющих сил на те же оси

Непосредственное применение условий равновесия в геометрической форме дает наиболее простое решение для системы трех сходящихся сил. При наличии в системе четырех и более сил рациональнее применять аналитический метод, который является универсальным и применяется чаще, всего.

Пара сил и ее действие на тело Две равные и параллельные силы, направленные в противоположные стороны и не лежащие на одной прямой, называются парой сил. Примером такой системы сил могут служить усилия, передаваемые руками шофера на рулевое колесо автомобиля. Пара сил имеет большое значение в практике.

Проекция вектора в данном случае положительна.

2. Сила  (рис. 12, б) составляет с положительным направлением оси x тупой угол . Тогда , но так как

Проекция вектора в данном случае отрицательна.

3. Сила  (рис. 12, в) перпендикулярна оси х. Проекция силы F на ось х равна нулю

Итак, проекция силы на ось координат равна произведению модуля силы на косинус угла между вектором силы и положительным направлением оси.

Силу, расположенную на плоскости хОу (рис. 13), можно спроектировать на две координатные оси Ох и Оу. На рисунке изображена сила  и ее проекции Fx и Fy, Ввиду того что проекции образуют между собой прямой угол, из прямоугольного треугольника АСВ следует:

Этими формулами можно пользоваться для определения модуля и направления силы, когда известны ее проекции на координатные оси. 

Наконец, механика проникает в другие науки, образуя на пересечении сфер влияния новые разделы (например, биомеханика). Биомеханика стремится понять механику живого. Это древний предмет, и он охватывает обширную область знаний от субклеточных элементов до отдельных клеток, растений и животных. В последние годы большинство выполненных работ посвящено физиологическим и медицинским приложениям биомеханики.

Известны вклады Г. Галилея в измерение пульса сердца, Р. Декарта (1596 - 1650) – в исследование глаза, Р. Гука (1635 - 1703) – в наблюдение клеток, Л. Эйлера – в изучение пульсирующих волн в артериях, Т. Юнга (1773 - 1829) – в теорию голоса и зрения, Г. Гельмгольца (1821 - 1894) – в теорию речи, зрения и психофизиологии, Ламба (1849 - 1934) – в обнаружение высокочастотных волн в артериях. Репутация многих известных физиологов устанавливалась на основе их деятельности, связанной с приложениями механики. Так, Стефан Хейлс (1677 - 1761) измерил артериальное давление и установил его связь с кровотечением. Он ввел понятие периферического сопротивления при течении крови и показал, что главная часть этого сопротивления падает на мельчайшие сосуды в тканях. Ж. Пуазейль разъяснил понятие вязкости и сопротивления при течении крови, а Отто Франк (1865 - 1944) – механику сердечной деятельности. Старлинг (1886 - 1926) предложил закон массопередачи через мембрану и объяснил водный баланс в нашем теле, Краф (1974 - 1949) получил Нобелевскую премию за механику микроциркуляции.


На главную