Математика Курсовая по Термеху Примеры решения задач Интеграл Физика Атомная физика Контрольная по физике Электроника Электротехника Электроэнергетика Тепловая и атомная энергетика Контрольная Школы дизайна Дизайн квартир Чертежи

Курсовые по Термеху и Сопромату

Подшипники скольжения

Для поддержания осей и валов с насаженными на них деталями и восприятия действующих на них усилий служат специальные опоры: подшипники, нагружаемые радиальными силами, и подпятники, нагружаемые осевыми силами. По характеру трения рабочих элементов опоры разделяют на опоры скольжения и опоры качения (шариковые и роликовые подшипники).

Выбор вида опоры зависит от большого числа конструктивных и эксплуатационных факторов. В опорах качения потери на трение обычно меньше, чем в опорах скольжения. Обеспечение в опорах скольжения жидкостного трения, при котором потери на трение соизмеримы с потерями в опорах качения, не всегда возможно.

Подшипники скольжения используют в современном машиностроении значительно реже подшипников качения. Однако имеется ряд областей, где их применение является предпочтительным. Например для подшипников особо тяжелых валов (для которых подшипники качения не изготовляют), для подшипников, подвергающихся ударной или вибрационной нагрузке, если необходимо иметь разъемные подшипники (для коленчатых валов) и тому подобное. Оформление чертежей Сборочный чертеж

Подшипник скольжения состоит из двух основных элементов: корпуса и вкладыша. Вкладыш, являющийся рабочим элементом опоры, может быть неподвижным относительно корпуса, подвижным и самоустанавливающимся; тип вкладышей выбирают в зависимости от отно­шения  длины цапфы к ее диаметру, т. е.и режима работы данной цапфы.

Подшипники качения — стандартные изделия, которые изготовляются в массовом количестве на специализированных заводах

Назначение и классификация муфт Муфтами называюи устройства, служащие для соединения валов между собой или с деталями, свободно насаженными на валы (зубчатые колеса, шкивы), с целью передачи вращающего момента. Муфты делятся на сцепные и постоянные. Сцепные муфты бывают фрикционные и кулачковые

Жесткие и упругие компенсирующие муфты применяют для компенсации погрешностей в относительном положении и соединяемых валов; смещения центров; взаимного наклона осей; осевого смещения. Возможность компенсировать тот или иной вид отклонений зависит от конструкции муфты.

Сцепные и предохранительные муфты Сцепные муфты предназначены для соединения и разъединения валов во время вращения (на ходу) или во время остановки (в покое)

Неразъемные подшипники делятся на несколько типов: узкие, широкие, фланцевые, гнездовые. Наиболее прост неразъемный подшипник, представляющий собой бобышку станины или рамы машины с расточкой цилиндрического отверстия для вала.

Более удобны неразъемные подшипники, но выполненные отдельно и соединяемые со станиной болтами (рис. 229). Подшипники подобного типа изготовляют с вкладышем и без вкладыша. Вкладыш представляет собой втулку (из чугуна, бронзы, древесного пластика или другого антифрикционного материала), запрессованную в отверстие. Часто металлические вкладыши заливают тонким слоем антифрикционного сплава (баббита и др.).

Недостаток опор такого типа — отсутствие возможности компенсации износа рабочей поверхности отверстия путем сближения одной его части с другой. Неразъемные опоры скольжения можно применять для сравнительно жестких осей и валов.

На рис. 230 показан разъемный подшипник. Подшипники этой группы состоят из корпуса 5, разрезного вкладыша 4, крышки 3 и болтов 1. Вкладыш неподвижен относительно корпуса и крышки.

Запросы современной, главным образом самолетной и ракетной техники, потребовали обобщения теории пограничного слоя на случай газа, движущегося с большими до- и сверхзвуковыми скоростями. Это обобщение выполнено трудами таких ученых, как А.А. Дородницын и Ф.И. Франкль – в СССР, Т. Карман, Л. Крокко и другие – за рубежом.

В последнее время усилия ученых сосредоточены на углублении фундаментальных представлений о механических процессах, уяснении их микроструктуры, на более глубоком отражении физико-химических особенностей поведения и взаимодействия тел в экстремальных (как в отношении нагрузок, так и параметров окружающей среды) условиях. Важную сферу для приложений представляет изучение оптимизации различных режимов и процессов. Широким фронтом идут работы, направленные на создание общих методов исследования с использованием вычислительных машин и моделированием на них физических процессов. Бескрайнее множество проблем, стоящих перед современными учеными-механиками, требует для их решения сосредоточения усилий больших творческих коллективов и широкого сотрудничества ученых как в России, так и в международном масштабе.


На главную