Математика Курсовая по Термеху Примеры решения задач Интеграл Физика Атомная физика Контрольная по физике Электроника Электротехника Электроэнергетика Тепловая и атомная энергетика Контрольная Школы дизайна Дизайн квартир Чертежи

Электроэнергетика

Тепловая энергия Земли

Геотермальная энергия Земли, обусловленная радиоактивным распадом в недрах, в целом оценивается мощностью около 32ТВт. Если бы ее выход к поверхности земли был равномерным, то она была бы непригодна для использования. Однако значительные ее выходы локализованы в районах вулканической активности, где концентрация подземного тепла во много раз больше. По результатам обследования таких районов геотермальные ресурсы мира, в принципе доступные для использования, оценены в 140 ГВт.. Общая установленная мощность геоТЭС в мире (США, Италия, Новая Зеландия, Мексика, Япония, Исландия, Россия и др.) не превышает 1,5 ГВт (в пересчете на электроэнергию).

В нашей стране горячими источниками особенно богаты Камчатка и Курильские острова – районы современного вулканизма. Источники, фонтанирующие паром и кипятком, известны в этих краях давно (некоторые из них описаны еще в 40-х годах XVIII в. С. Крашенинниковым), однако разведочное бурение началось там лишь в 1958 г. В районе реки Паратунки была сооружена первая в нашей стране геотермальная электростанция, а с 1967 г. на Паужетских термальных источниках в 200 км от Петропавловска-Камчатского действует гелиотермальная электростанция мощностью 15 тыс. кВт.

Электроэнергетические системы и электрические сети Выработка электроэнергии производится на: ТЭС, ГЭС (гидравлические электрические станции), АЭС, КЭС (конденсационные электрические станции или их еще называют ГРЭС – государственные районные электростанции) и ТЭЦ (теплоэлектроцентрали).

  Транспорт энергии Потребление энергии растет с каждым годом. Вместе с тем места расположения электростанций не могут быть выбраны произвольно. Два обстоятельства – рост потребления и, следовательно, производства электроэнергии и отсутствие свободы в выборе места расположения электростанции – делают транспорт энергии одним из важнейших вопросов современного развития энергетики.

Структура энергопотребления РБ. Основные направления энергосбережения. Вторичные энергетические ресурсы (ВЭР)

Перейдем к рассмотрению перспективных цен на топливно-энергетические ресурсы при определенных выше объемах их производства и потребных капиталовложениях.

Таким образом, изложенный комплексный подход к формированию цен на основные виды топлива на внутреннем рынке России позволяет решить две задачи: за счет динамичных таможенных пошлин ослабить зависимость внутренних цен от уровня экспортных цен, то есть обеспечить в определенной мере относительное их постоянство, что должно положительно отразиться на стабилизации всей национальной экономики; обеспечить самофинансирование инвестиций в развитие топливных отраслей

Большой экономический интерес представляет исследование влияния на национальную экономику роста цен на топливо вплоть до уровня мировых цен. С этой целью были определены стоимость топлива и средняя цена на него при исходной структуре топливного баланса страны и электроэнергетики в частности, а также перспективная цена внутреннего рынка и средняя цена при экспортных ценах на газ, нефть и уголь при изменении структуры топливного баланса в сторону его «углефикации»

О Государственной политике Республики Беларусь в сфере энергосбережения Важнейшим приоритетом государственной энергетической политики в Республике Беларусь наряду с устойчивым обеспечением страны энергоносителями является создание условий для функционирования и развития экономики при максимально эффективном использовании топливно-энергетических ресурсов (ТЭР)

В Республике Беларусь выстроена четкая система финансирования энергосбережения.

Различают ВЭР: горючие, тепловые и избыточного давления. Горючие ВЭР – это горючие газы и отходы одного производства, которые могут быть применены непосредственно в виде топлива в других производствах. Это доменный газ – металлургия; щепа, опилки, стружка – деревообрабатывающая промышленность; твердые, жидкие, промышленные отходы в химической и нефтегазоперерабатывающей промышленности и т.д.

Топливно-энергетические ресурсы РФ  Топливно-энергетические ресурсы региона (около 30% прогнозных запасов топливно-энергетических ресурсов европейской части России) представлены крупнейшими запасами нефти, природного газа (Тимано-Печорская и Баренцево-Карская провинции), угля (Печорский бассейн), горючих сланцев, торфа.

Энергетика - важнейшая отрасль народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Это основа экономики государства. Развитие человеческого общества неразрывно связано с использованием природных ресурсов нашей планеты, с потреблением энергии во все возрастающих масштабах. Но большинство ресурсов не возобновляется, по крайней мере, в заметных количествах. Это повышает ответственность людей перед грядущими поколениями за бережное и рациональное использование ресурсов планеты, возможно меньшее загрязнение ее всевозможными отходами.

Транспортирование и потребление тепловой и электрической энергии. Характеристики отдельных видов топлива Характеристики видов топлива находятся в зависимости от химического возраста этих топлив.

Основными потребителями тепловой энергии являются промышленные предприятия и жилищно-коммунальной хозяйство. Для большинства производственных потребителей требуется тепловая энергия в виде пара (насыщенного или перегретого) либо горячей воды. Например, для силовых агрегатов, которые имеют в качестве привода паровые машины или турбины (паровые прессы, ковочные машины, турбонасосы и др.), необходим пар давлением 0,8 – 3,5 Мпа и перегретый до 250 - 450°С.

Для технологических аппаратов и устройств (разного рода подогреватели, сушилки, химические реакторы) преимущественно требуется насыщенный или слабо перегретый пар давлением 0,3 – 0,8 МПа и вода с температурой 150°С.

В жилищно-коммунальном хозяйстве основными потребителями теплоты являются системы отопления и вентиляции жилых и общественных зданий, системы горячего водоснабжения и кондиционирования воздуха. В жилых и общественных зданиях температура поверхности отопительных приборов в соответствии с требованиями санитарно-гигиенических норм не должна превышать 95°С, а температура воды в кранах горячего водоснабжения должна быть не ниже 50 - 60°С в соответствии с требованиями комфортности и не выше 70°С по нормам техники безопасности. В связи с этим в системах отопления, вентиляции и горячего водоснабжения в качестве теплоносителя применяется горячая вода.

Системы теплоснабжения

 

Системой теплоснабжения называется комплекс устройств по выработке, транспорту и использованию теплоты. 

Снабжение теплотой потребителей (систем отопления, вентиляции, горячего водоснабжения и технологических процессов) состоит из трех взаимосвязанных процессов: сообщения теплоты теплоносителю, транспорта теплоносителя и использования теплового потенциала теплоносителя. Системы теплоснабжения классифицируются по следующим основным признакам: мощности, виду источника теплоты и виду теплоносителя. По мощности системы теплоснабжения характеризуются дальностью передачи теплоты и числом потребителей. Они могут быть местными и централизованными.

Местные системы теплоснабжения – это системы, в которых три основных звена объединены и находятся в одном или смежных помещениях.

Централизованные системы теплоснабжения – системы, в которых от одного источника теплоты подается теплота для многих помещений.

По виду источника теплоты системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При системе районного теплоснабжения источником теплоты служит районная котельная, теплофикации – ТЭЦ.

Теплоноситель получает теплоту в районной котельной (или ТЭЦ) и по наружным трубопроводам, которые носят название тепловых сетей, поступает в системы отопления, вентиляции промышленных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированной в нем теплоты и отводится по специальным трубопроводам обратно к источнику теплоты.

Теплоноситель – среда, которая передает теплоту от источника теплоты к нагревательным приборам систем отопления, вентиляции и горячего водоснабжения. По виду теплоносителя системы теплоснабжения делятся на 2 группы – водяные и паровые. В водяных системах теплоснабжения теплоносителем служит вода, в паровых – пар. В Беларуси для городов используются водяные системы теплоснабжения. Пар применяется на промышленных объектах для технологических целей.

Системы водяных теплопроводов могут быть однотрубными и двухтрубными. Наиболее распространенной является двухтрубная система теплоснабжения (по одной трубе подается горячая вода потребителю, по другой, обратной, охлажденная вода возвращается на ТЭЦ или котельную).

Тепловые сети 

 

В Беларуси длина тепловых сетей (на 1996 г.) составляет: основных около 800 км, распределительных – 1400 км.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки, изоляционная конструкция, предназначенная для защиты трубопровода от наружной коррозии и тепловых потерь, и несущая конструкция, воспринимающая вес трубопровода и усилия, возникающие при его эксплуатации.

Трубы должны быть прочными и герметичными при максимальных давлениях и температурах теплоносителя, обладать низким коэффициентом температурных деформаций, малой шероховатостью внутренней поверхности, антикоррозийной стойкостью. Для снижения потерь теплоты на трубопроводы накладывается тепловая изоляция. Тепловая изоляция должна обладать достаточной механической прочностью, долговечностью, стойкостью против увлажнения и не создавать условий для возникновения коррозии. Температура на поверхности изоляционной конструкции не должна быть выше 60° С. Толщина слоя изоляции определяется на основе расчетов.

Прокладка трубопроводов производится над землей, на земле и под землей. При подземной прокладке трубопроводы размещаются либо непосредственно в грунте (бесканальная прокладка), либо в непроходных, полупроходных и проходных каналах.


На главную