Математика Курсовая по Термеху Примеры решения задач Интеграл Физика Атомная физика Контрольная по физике Электроника Электротехника Электроэнергетика Тепловая и атомная энергетика Контрольная Школы дизайна Дизайн квартир Чертежи

Контрольная по математике. Решение задач

Пример 2 Вычислить двойной интеграл , в котором область интегрирования R ограничена прямыми линиями .


Решение.
Область интегрирования R имеет вид неправильного треугольника и показана на рисунке 3. Чтобы упростить ее, введем новые переменные: . Выразим x, y через u, v и определим образ области интегрирования S в новой системе координат. Легко видеть, что
     
Рис.3
Рис.4
Заметим, что
     
Следовательно,
     
Таким образом, мы получаем
     
Если , то . Соответственно, если , то . Область S имеет вид прямоугольного треугольника (рисунок 4 выше).

Уравнение стороны можно переписать в виде
     
Найдем якобиан.
     
Следовательно, и двойной интеграл становится равным

     

   Пример 3

Вычислить интеграл , где область R ограничена параболами и гиперболами .


Решение.
Область R схематически показана на рисунке 5.
Рис.5
Для упрощения области R сделаем замену переменных.
     
Образ S области R определяется следующим образом:
     
Как видно, образ S является прямоугольником. Для нахождения якобиана выразим переменные x, y через u, v.
     
Отсюда следует
     
Находим якобиан данного преобразования.
     
Соотношение между дифференциалами имеет вид
     
Теперь легко найти искомый интеграл:

     

  Пример 4 Вычислить интеграл , где область R ограничена прямыми .


Решение.
Область интегрирования R имеет форму параллелограмма и показана на рисунке 6.
Рис.6
Рис.7
Сделаем следующую замену переменных:
     
Цель этой замены − упростить область интегрирования R.
Найдем образ S области R в новых координатах u, v.
     
Из рисунка 7 видно, что область S представляет собой прямоугольник. Вычислим якобиан.
     
так что
     
Теперь можно вычислить двойной интеграл.
     


На главную