Математика Курсовая по Термеху Примеры решения задач Интеграл Физика Атомная физика Контрольная по физике Электроника Электротехника Электроэнергетика Тепловая и атомная энергетика Контрольная Школы дизайна Дизайн квартир Чертежи

Контрольная по математике. Решение задач

Геометрические приложения криволинейных интегралов

Криволинейные интегралы имеют многочисленные приложения в математике, физике и прикладных расчетах. В частности, с их помощью вычисляются

Длина кривой
Пусть C является гладкой, кусочно-непрерывной кривой, которая описывается вектором . Длина данной кривой выражается следующим криволинейным интегралом
где − производная, а − компоненты векторной функции .

Если кривая C задана в плоскости, то ее длина выражается формулой
Если кривая C представляет собой график заданной явно, непрерывной и дифференцируемой функции в плоскости Oxy, то длина такой кривой вычисляется по формуле
Наконец, если кривая C задана в полярных координатах уравнением , и функция является непрерывной и дифференцируемой в интервале , то длина кривой определяется выражением

Пример 4 Найти длину циклоиды, заданной в параметрическом фиде вектором в интервале

Пример 7 Найти площадь области, ограниченной гиперболой , осью Ox и вертикальными прямыми x = 1, x = 2

Геометрические приложения поверхностных интегралов С помощью поверхностных интегралов вычисляются

Пример 4 Вычислить объем эллипсоида .

Пример 5 С помощью формулы Грина вычислить интеграл , где контур C представляет собой треугольник ABD с вершинами A (a,0), B (a,a), D (0,a).

Интегрирование по частям Пример Вычислить интеграл . Решение. Используем формулу интегрирования по частям . Пусть .

Площадь области, ограниченной замкнутой кривой
Пусть C является гладкой, кусочно-непрерывной и замкнутой кривой, заданной в плоскости Oxy (рисунок 1). Тогда площадь области R, ограниченной данной кривой, определяется формулами
Здесь предполагается, что обход кривой C производится против часовой стрелки.

Если замкнутая кривая C задана в параметрическом виде , то площадь соответствуюшей области равна
Рис.1
Рис.2
Объем тела, образованного вращением замкнутой кривой относительно оси Ox
Предположим, что область R расположена в верхней полуплоскости y ≥ 0 и ограничена гладкой, кусочно-непрерывной и замкнутой кривой C, обход которой осуществляется против часовой стрелки. В результате вращения области R вокруг оси Ox образуется тело Ω (рисунок 2). Объем данного тела определяется формулами

 

Пример 1 Найти длину кривой при условии .


Решение.
Запишем функцию в виде или . Поскольку y ≥ 0, то мы возьмем только положительный корень в уравнении кривой (рисунок 3). Длина кривой равна
Рис.3
Рис.4

 

Пример 2 Вычислить длину астроиды .


Решение.
Астроида показана выше на рисунке 4. В силу симметрии, достаточно вычислить длину кривой, лежащей в первом квадранте, и затем умножить результат на 4. Уравнение астроиды в первом квадранте имеет вид
     
Тогда
     
и, следовательно,
     
Таким образом, длина всей астроиды равна

     

Пример 3 Найти длину пространственной кривой, заданной параметрически в виде , где .


Решение.
Используя формулу
     
получаем
     


Только в сценах возбуждающего массажа в порно массажистки выглядят настолько сексуально и готовы порадовать клиентов не только горячими прикосновениями На главную