Математика Курсовая по Термеху Примеры решения задач Интеграл Физика Атомная физика Контрольная по физике Электроника Электротехника Электроэнергетика Тепловая и атомная энергетика Контрольная Школы дизайна Дизайн квартир Чертежи

Промышленная электроника

Мультиплексоры

 Мультиплексор - коммутатор цифровых сигналов. Мультиплексор представляет собой комбинационное устройство с m информационными, n управляющими входами и одним выходом. Функционально мультиплексор состоит из m элементов конъюнкции, выходы которых объединены дизъюнктивно с помощью элемента ИЛИ с m входами. На одни входы всех элементов конъюнкции подаются информационные сигналы, а другие входы этих элементов соединены с соответствующими выходами дешифратора с n входами.

 Функциональная схема мультиплексора приведена на рис. 3.7.1:

 Рис. 3.7.1

Из рисунка следует, что мультиплексор содержит дешифратор на соответствующее число выходов (число выходов дешифратора определяется числом информационных входов мультиплексора), элементы конъюнкции на два или на три входа каждый и элемент дизъюнкции с числом входов, равным количеству информационных линий D0 . . . Dm. Число входов элементов И может быть равным только двум, однако, во многих случаях возникает необходимость стробирования выходного сигнала мультиплексора импульсами независимого источника. В таких случаях в структуре мультиплексора используются элементы И с тремя входами. Одни из входов всех элементов конъюнкции, в последнем случае, объединяются, и по этой линии подается сигнал разрешения работы мультиплексора (стробирующий сигнал). Наличие дополнительного управляющего входа расширяет функциональные возможности мультиплексора и позволяет проще реализовать методы борьбы с гонками.

Классификация, назначение регистров Регистры – это цифровые устройства, предназначенные для хранения нескольких бит информации одновременно. Как правило, количество бит, хранимых в регистрах,  кратно четырем

Назначение, классификация дешифраторов Дешифратор – это комбинационное устройство, предназначенное для преобразования параллельного двоичного кода в унитарный, т.е. позиционный код. Обычно, указанный в схеме номер вывода дешифратора соответствует десятичному эквиваленту двоичного кода, подаваемого на вход дешифратора в качестве входных переменных, вернее сказать, что при подаче на вход устройства параллельного двоичного кода на выходе дешифратора появится сигнал на том выходе, номер которого соответствует десятичному эквиваленту двоичного кода.

Полный сумматор. Многоразрядный сумматор Полный одноразрядный двоичный сумматор имеет три входа: a, b — для двух слагаемых и p — для переноса из предыдущего (более младшего) разряда и два выхода: S — сумма, P — перенос в следующий (более старший) разряд.

Импульсная модерация Как уже указывалось, в процессе модуляции любого вида принимают участие модулирующий сигнал и некоторая функция, играющая роль несущей. В двух предыдущих главах описан случай, когда в качестве несущей используется гармоническое колебание. Другим важным примером является импульсная модуляция, при которой несущей служит последовательность одинаковых импульсов, один из параметров которых изменяется в соответствии с изменением модулирующего воздействия.

Для дальнейшего изучения свойств процесса дискретизации лучше всего обратиться к методам частотного анализа. В связи с этим напомним, что умножение и свертка функций являются двойственными операциями во временной и частотной областях.

 Рис. 3.7.2

На рисунке 3.7.2 показано обозначение мультиплексора на принципиальных и функциональных электрических схемах.

  Из уравнения мультиплексора видно, что на его выход будет передаваться сигнал только с одного входа, номер которого совпадает с числом, соответствующим кодовой комбинации Х1 и Х2. Если Х1=Х2=0, на выход мультиплексора будет передаваться сигнал с входа D0. Когда на адресных (управляющих) входах Х1=1 и Х2=0, то на выход будет передаваться сигнал с входа D1 и т.д.

 Мультиплексоры нашли широкое применение в вычислительной технике в качестве коммутаторов цифровых сигналов. Они используются в компьютерах и микропроцессорных контроллерах для коммутации адресных входов динамических оперативных запоминающих устройств, в узлах объединения или разветвления шин и т.д. На базе мультиплексоров можно построить различные комбинационные устройства с минимальным числом дополнительных элементов логики. Следует отметить, что мультиплексоры хотя, и предназначены для коммутации цифровых сигналов, но с помощью мультиплексоров, изготовленных по КМОП технологии, можно коммутировать и аналоговые сигналы.

Назначение, классификация сумматоров

Сумматор — логический операционный узел, выполняющий арифметическое сложение кодов двух чисел. При арифметическом сложении выполняются и другие дополнительные операции: учёт знаков чисел, выравнивание порядков слагаемых и тому подобное. Указанные операции выполняются в арифметическо-логических устройствах (АЛУ) или процессорных элементах, ядром которых являются сумматоры.

Сумматоры классифицируют по различным признакам.

В зависимости от системы счисления различают: двоичные; двоично-десятичные (в общем случае двоично-кодированные);  десятичные; прочие (например, амплитудные).

По количеству одновременно обрабатываемых разрядов складываемых чисел: одноразрядные, многоразрядные.

По числу входов и выходов одноразрядных двоичных сумматоров: 1) четвертьсумматоры (элементы “сумма по модулю 2”; элементы “исключающее ИЛИ”), характеризующиеся наличием двух входов, на которые подаются два одноразрядных числа, и одним выходом, на котором реализуется их арифметическая сумма; 2) полусумматоры, характеризующиеся наличием двух входов, на которые подаются одноимённые разряды двух чисел, и двух выходов: на одном реализуется арифметическая сумма в данном разряде, а на другом — перенос в следующий (более старший разряд); 3) полные одноразрядные двоичные сумматоры, характеризующиеся наличием трёх входов, на которые подаются одноимённые разряды двух складываемых чисел и перенос из предыдущего (более младшего) разряда, и двумя выходами: на одном реализуется арифметическая сумма в данном разряде, а на другом — перенос в следующий (более старший разряд).

По способу представления и обработки складываемых чисел многоразрядные сумматоры подразделяются на: последовательные, в которых обработка чисел ведётся поочерёдно, разряд за разрядом на одном и том же оборудовании; параллельные, в которых слагаемые складываются одновременно по всем разрядам, и для каждого разряда имеется своё оборудование.

По способу организации межразрядных переносов параллельные сумматоры, реализующие структурные методы, делят на сумматоры: с последовательным переносом;

с параллельным переносом; с групповой структурой; со специальной организацией цепей переноса.

Сумматоры, которые имеют постоянное время, отводимое для суммирования, независимое от значений слагаемых, называют синхронными.

По способу выполнения операции сложения и возможности сохранения результата сложения можно выделить три основных вида сумматоров: комбинационный, выполняющий микрооперацию “S = A плюс B”, в котором результат выдаётся по мере его образования (это комбинационная схема в общепринятом смысле слова); сумматор с сохранением результата “S = A плюс B”; накапливающий, выполняющий микрооперацию “S = S плюс B”.

Последние две структуры строятся либо на счётных триггерах (сейчас практически не используются), либо по структуре “комбинационный сумматор – регистр хранения” (сейчас наиболее употребляемая схема). Важнейшими параметрами сумматоров являются:

разрядность; статические параметры: Uвх, Uвх, Iвх и так далее, то есть обычные параметры интегральных схем; динамические параметры. 

Сумматоры характеризуются четырьмя задержками распространения:

от подачи входного переноса до установления всех выходов суммы при постоянном уровне на всех входах слагаемых;

от одновременной подачи всех слагаемых до установления всех выходов суммы при постоянном уровне на входе переноса;

от подачи входного переноса до установления выходного переноса при постоянном уровне на входах слагаемых;

от подачи всех слагаемых до установления выходного переноса при постоянном уровне на входах слагаемых.

Полусумматор (рис. 3.8.1) имеет два входа a и b для двух слагаемых и два выхода: S — сумма, P — перенос. Обозначением полусумматора служат буквы HS (half sum — полусумма):

 Рис. 3.8.1

Работу его отражает таблица истинности, а соответствующие уравнения (1) имеют вид:

a

b

P

S

0

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

 (1)

Из уравнений (1) следует, что для реализации полусумматора требуется один элемент “исключающее ИЛИ” и один двухвходовый вентиль И (рис. 3.8.1 б).


plakaty drukarnia, bardzo jako's'c На главную