Математика Курсовая по Термеху Примеры решения задач Интеграл Физика Атомная физика Контрольная по физике Электроника Электротехника Электроэнергетика Тепловая и атомная энергетика Контрольная Школы дизайна Дизайн квартир Чертежи

Лекции и задачи второго семестра по математике

Справочный материал к выполнению контрольной работы №2

Тройной интеграл

Вычисление тройного интеграла в декартовых координатах

Пусть функция 3-х переменных u = f (x, y, z) задана и непрерывна в замкнутой области V xOyz. Тройной интеграл от этой функции по области V имеет вид: , где .

Если область V – правильная в направлении оси Oz (рис. 5), то ее можно задать системой неравенств:  где z = z1 (x, y) и z = z2 (x, y) – это уравнения поверхностей, ограничивающих область (тело) V соответственно снизу и сверху (рис. 5).

Двойной интеграл Вычисление двойного интеграла в декартовых координатах

Криволинейный интеграл II рода (по координатам)

Векторное поле Поток векторного поля через поверхность

Потенциальные и соленоидальные векторные поля Ротор векторного поля

Решение примерного варианта контрольной работы №1

Задача . Дана функция z = cos2(2x – y). Требуется: 1) найти частные производные  и ; 2) найти полный дифференциал dz;

Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1, x + y = 3. 

Поверхность задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.

 Если область D можно задать системой неравенств

  то

В этом случае тройной интеграл от функции u = f (x, y, z) по области V можно вычислить при помощи трехкратного повторного интеграла:

.

Здесь каждый внутренний интеграл вычисляется по «своей» переменной интегрирования в предположении, что переменные интегрирования внешних интегралов остаются постоянными.

Существует всего 6 вариантов сведения тройного интеграла к трехкратному в декартовых координатах (в зависимости от выбранного порядка интегрирования).

 

Вычисление тройного интеграла в цилиндрических координатах

Цилиндрические координаты точки М в пространстве – это ее полярные координаты на плоскости xOy и координата z, т.е. .

Преобразование тройного интеграла по области V к цилиндрическим координатам осуществляется при помощи формул , , .

Если область V задана системой неравенств:

  причем  то V:

Вычисление тройного интеграла по области V в цилиндрических координатах сводится к вычислению трехкратного интеграла в соответствии с записанной системой неравенств для области V:

.

 

 

Некоторые приложения тройных интегралов

 Если подынтегральная функция f (x, y, z) º 1, то тройной интеграл от нее по области V равен мере области интегрирования – объему пространственного тела, занимающего область V: .

Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

.  (12)


В рот - страсть накачанных обольстителей, с каким совладают только единственные сверхурочницыНабережные Челны http://prostitutkinaberezhnyechelny.date/v-rot/, и если вы выберите эту услугу, то на другую одержите поощрение, ну и конечно бонусное предложение в следующий раз. | Расслабляющий массаж - это преимущественно признанная услуга, какую заказывают у шлюхСамары http://prostitutkisamary.party/rasslablyayushiy-massaj/, так что приобретите себе эту или запросите новую услугу и удовольствие вам будет обеспечено 100%. На главную