Математика Курсовая по Термеху Примеры решения задач Интеграл Физика Атомная физика Контрольная по физике Электроника Электротехника Электроэнергетика Тепловая и атомная энергетика Контрольная Школы дизайна Дизайн квартир Чертежи

Лекции и задачи второго семестра по математике

Объём цилиндрического тела.

Двойной интеграл.

Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D. Такая фигура называется цилиндрическим телом (рисунок 1).

Рисунок 1. Цилиндрическое тело

Объём цилиндрического тела можно вычислить приближённо, заменив его ступенчатой фигурой следующим образом.

Вычислим объем шара радиуса R. В этом случае подынтегральную функцию надо взять равной 1, и мы получим

Вычисление двойного интеграла в декартовых координатах Двойной интеграл в полярных координатах

Тройной интеграл в цилиндрических координатах Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга.

Криволинейный интеграл первого рода Вычисление криволинейных интегралов 1-го рода

Криволинейный интеграл второго рода Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки. Физическая задача вычисления работы силы  при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N Вычислить криволинейный интеграл первого рода

Формула Грина. Условие независимости криволинейного интеграла второго рода от вида пути интегрирования

Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).

1. Область D произвольным образом разбивается на конечное число п элементарных областей (ячеек) D1, D2,..., Dn, площади которых обозначим соответственно ΔS, ΔS2 ,..., ΔSn. Диаметром ячейки называют наибольшее расстояние между двумя точками на её границе и обозначают diamDi.

Выберем в каждой ячейке Di произвольную точку и вычислим в ней значение. Составим сумму вида:

Каждое  слагаемое в сумме вычисляет объём прямого цилиндра с основанием Di и высотой .

Сумма (1) называется интегральной уммой для функции f(x,y) по области D. Предел интегральной суммы (1) при max diamDi→0 (n→∞) называется двойным интегралом от функции f(x,y) по области D:

В обозначении двойного интеграла D-область интегрирования f(x,y) - подынтегральная функция, dS-дифференциал площади, который можно заменить произведением дифференциалов независимых переменных dxdy.

Формула (2) позволяет вычислить объём цилиндри-ческого тела при f(x,y)>0, в чём и заключается геометрический смысл двойного интеграла.

В общем случае, если функция f(x, у) непрерывна в замкнутой области D, то двойной интеграл существует (существует предел интегральной суммы (2)) и не зависит от способа разбиения области D на частичные и от выбора точек   в них.

2. Основные свойства и приложения двойного интеграла

1. Линейные свойства двойного интеграла:

2. Если область D разделена на несколько частей D1, D2,...,Dk без общих внутренних точек, то

3. Если функция f(x, у) непрерывна в замкнутой области D, то в этой области найдётся такая точка (хо,уо), что

где SD - площадь области D (теорема о среднем).

4. Если m, М - наименьшее  и наибольшее значения непрерывной функции f(x,y) в области D, то справед-ливо двойное неравенство (оценка двойного интеграла):

где SD - площадь области D (теорема о среднем).

С помощью двойных интегралов можно вычислить следующие величины. Площадь плоской фигуры D:

  Если D - плоская пластинка с поверхностной плотностью μ(х,у), то по следующим формулам определяются:

а) масса пластинки

б) статические моменты пластинки относительно осей Ох и Оу:


в) координаты центра масс пластинки:

г) моменты инерции пластинки D относительно осей координат и начала координат:


Ежели вы не узнавали где проживают девушки по вызову, мы предупреждаем: они прилагают старанияв районе Калининский http://tumen.prostitutki.black/kalininskiy/. Лишь эти девушки способны до конца удовлетворить покупателя. | Фетиш от обаятельных давалочекОрла http://orel.prostitutki.surf/fetish/, и если вы закажите собственно эту услугу, то одержите шиацумассаж как бонус. | Анальный секс - это шикарная услуга, а приведут в действие всё мокрые бланкеткиНижневартовска http://nizhnevartovsk.prostitutki.black/analniy-seks/, от которых любой потребитель приобретает невообразимое умиление и поимев этих шлюшек больше никогда не сумеет отговориться. На главную