Математика Курсовая по Термеху Примеры решения задач Интеграл Физика Атомная физика Контрольная по физике Электроника Электротехника Электроэнергетика Тепловая и атомная энергетика Контрольная Школы дизайна Дизайн квартир Чертежи

Курсовая работа по электротехнике

Резонанс в электрических цепях

1. Определение резонанса

В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки   и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонансным режимом цепи или просто резонансом называется явление увеличения амплитуды гармонических колебаний энергии в цепи, наблюдаемое при совпадении частоты собственных колебаний wo с частотой вынужденных колебаний w, сообщаемых цепи источником энергии (wo = w).

В резонансном режиме колебания энергии между магнитным и электрическим полями замыкаются внутри цепи, обмен энергией между источником и цепью отсутствует, а вся поступающая от источника энергия преобразуется в другие виды, т.е. электрическая цепь по отношению к источнику энергии ведет себя как чисто активное сопротивление R (активная проводимость G). На этом основании условие для резонансного режима можно сформулировать через параметры элементов схемы, а именно: входное сопротивление и, соответственно, входная проводимость схемы со стороны выводов источника энергии должна носить чисто активный характер: Zвх=Rвх; Yвх=Gвх; Xвх=0; Bвх=0; или в комплексной форме: Im[Zвх]=0, Im[Yвх]=0.

Магнитносвязанные электрические цепи Если магнитное поле, создаваемое одной из катушек, пересекает плоскость витков (сцеплено с витками) второй катушки, то такие катушки принято называть магнитносвязанными (индуктивносвязанными)

Линейный (без сердечника) трансформатор Схема линейного трансформатора состоит из двух магнитносвязанных катушек, к одной из которых (первичной) подключается источник ЭДС Е, а ко второй (вторичной) - нагрузка ZН

Топологические методы расчета электрических цепей

Электрические цепи трехфазного тока. Трехфазная система Многофазной системой называется совокупность, состоящая из ”n” отдельных одинаковых электрических цепей или электрических схем, режимные параметры в которых (е, u, i) сдвинуты во времени на равные отрезки  или по фазе .

Расчет сложных трехфазных цепей Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока. Установившейся режим в такой схеме может быть описан системой алгебраических уравнений с комплексными коэффициентами, составленных по одному из методов расчета сложных цепей (метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов).

Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении Пусть к симметричному трехфазному приемнику, например электродвигателю, приложена несимметричная система напряжений UA, UB, UC. Для получения общих закономерностей введем в схему нулевой провод с сопротивлением ZN.

Электрические цепи периодического несинусоидального тока Как известно, в электроэнергетике в качестве стандартной формы для токов и напряжений принята синусоидальная форма. Однако в реальных условиях формы кривых токов и напряжений могут в той или иной мере отличаться от синусоидальных. Искажения форм кривых этих функций у приемников приводят к дополнительным потерям энергии и снижению их коэффициента полезного действия. Синусоидальность формы кривой напряжения генератора является одним из показателей качества электрической энергии как товара.

Расчет электрических цепей несинусоидального тока Расчет электрических цепей, содержащих источники энергии [источники ЭДС e(t) и источники тока j(t)] с несинусоидальной формой кривой, выполняется по методу положения. Процедуру расчета можно условно разделить на три этапа.

2. Резонанс напряжений

Резонанс в цепи с последовательным соединением источника энергии и реактивных элементов L и C получил название резонанса напряжений. Простейшая схема такой цепи показана на рис. 59.

Комплексное входное сопротивление схемы:.

Условие резонанса напряжений: Xэ= XL - XC =0 или wL - =0 , откуда w0 = - резонансная или собственная частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полное сопротивление схемы имеет минимальное значение и равно активному сопротивлению:

= R,

а ток максимален и совпадает по фазе с напряжением источника: I=E/R; j = 0.

Векторная диаграмма напряжений и тока показана на рис. 60.

 

 

Напряжения на реактивных элементах равны по модулю, противоположны по фазе и взаимно компенсируют друг друга:

,

а напряжение на резисторе равно напряжению источника: UR=IR=U=E.

Напряжения на реактивных элементах

могут значительно превосходить напряжение источника U = Е при условии, что XL=XC>>R.

Выясним энергетические процессы, протекающие в цепи в резонансном режиме. Пусть в цепи протекает ток i =Imsinwt, тогда напряжение на конденсаторе составит:

.

Сумма энергий магнитного и электрического полей равна:

Таким образом, сумма энергий магнитного и электрического полей равна постоянному значению. Это значит, что между магнитным и электрическим полями происходит непрерывный обмен энергией, суммарное значение которой постоянно, а обмен энергией между источником и цепью отсутствует, при этом поступающая от источника энергия преобразуется в другие виды..

Электрическая цепь с последовательным соединением элементов R, L, C в технике получила название последовательного колебательного контура. Свойства такой цепи как колебательного контура характеризуют следующие параметры:  - резонансная частота, r =  - волновое сопротивление,  - добротность контура.

Чем больше добротность контура Q, тем выразительнее проявляются в нем резонансные явления, например, напряжения на реактивных элементах больше напряжения источника в Q раз: UL = UC = UQ.

При изменении частоты источника w = var будут изменяться сопротивления реактивных элементов и, как следствие, будут изменяться ток в цепи и напряжения на отдельных участках.

Частотными характеристиками контура называются зависимости сопротивлений отдельных элементов и участков от частоты XL =wL, XC =, X=XL-XC, Z= (рис. 61).

Резонансными характеристиками называются зависимости режимных параметров от частоты: UL, UC, I, j = f(w) (рис. 62).

Полосой пропускания резонансного контура называют область частот Dw = w1-w2, на границах которой ток I в  раз меньше своего максимального значения, т.е. I=0,707Imax. Полоса пропускания контура обратно пропорциональна его добротности:  Dw =. На рис. 63 в относительных единицах представлено семейство резонансных характеристик с различными значениями добротности.


Практическое применение резонанс напряжений находит в области радиотехники и техники связи. В электроэнергетике явление резонанса напряжений из-за сопутствующих ему перенапряжений может привести к нежелательным последствиям. Например, при подключении к генератору или трансформатору кабельной линии, не замкнутой на приемном конце на нагрузку (в режиме холостого хода), вся цепь может оказаться в резонансом режиме, при этом напряжения на отдельных участках цепи могут появиться высокие напряжения.

 

 

 

 

 

 

 

 

 

 

 

Резонанс токов

Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов. Простейшая схема такой цепи показана на рис. 64.

 

Комплексная входная проводимость схемы:

Условие резонанса токов:  или , откуда  - резонансная  (собственная) частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полная проводимость схемы равна активной проводимости и имеет минимальное значение:  = G, а ток источника также минимален и совпадает по фазе с напряжением источника (j = 0): I =UY = UG.

Токи в ветвях с реактивными элементами IL=U(-jBL), IC =U(jBC) равны по модулю, противоположны по фазе и компенсируют друг друга, а ток в резисторе G равен току источника (I=IG=UG). Равные по модулю токи в реактивных элементах IL = IC могут значительно превосходить ток источника I при условии, что BL=BC>>G .

Векторная диаграмма токов и напряжений показана на рис. 65.

Электрическая цепь с параллельным соединением элементов G, L и C в технике получила название параллельного колебательного контура. Свойства такой цепи как колебательного контура характеризуют следующие параметры:  - резонансная частота;  - волновая проводимость;  - добротность контура.

 

 

 

 

 

 

Резонансные характеристики параллельного контура представлены на рис. 66.

Рис. 66 
 

Резонанс токов находит широкое применение в области радиотехники и техники связи. В электроэнергетике компенсация реактивной мощности на промышленных предприятиях с помощью параллельного подключения конденсаторных батарей, по сути дела, представляет собой мероприятие, при котором также достигается резонанс токов.

 

 

 

 

 

Резонанс в сложных схемах

Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.

 На рис. 67 приведена эквивалентная схема параллельного контура, в которой реальные элементы цепи (катушка и конденсатор) представлены последовательными схемами замещения.

 

Входная комплексная проводимость схемы:

Условие резонанса:

 или 

Отличие данного условия резонанса от аналогичного условия для простейшей схемы рис. 64 состоит в том, что в этом уравнении присутствуют параметры активных элементов R1 и R2.

Анализ полученного уравнения показывает, что при изменении параметров одного из элементов схемы возможны различные варианты решения.

При изменении сопротивлений R1 и R2 возможны два варианта решения: 1)существует одна точка резонанса (корни уравнения вещественные; один положительный, а другой отрицательный); 2)резонанс в схеме невозможен (корни уравнения комплексные).

При изменении индуктивности L или емкости C возможны три варианта решения: 1)существует две точки резонанса (корни уравнения вещественные и оба положительные); 2)существует одна точка резонанса (корни уравнения равные и положительные); 3)резонанс в схеме невозможен (корни уравнения комплексные).

Решая уравнение резонанса относительно частоты, получим:

Анализ этого уравнения показывает, что при R1 = R2 резонансная частота имеет выражение , как и для простейшей схемы рис. 1, а при  для w0 получается неопределенное решение, что физически означает резонансный режим на любой частоте.

На рис.10 приведена схема последовательного контура, в которой реальные элементы (катушка и конденсатор) представлены различными схемами замещения.

Входное комплексное сопротивление схемы:

Условие резонанса:

 или 

Анализ этого уравнения показывает неоднозначную зависимость условия резонанса от значений параметров каждого элемента схемы.

Если сложная схема содержит в своей структуре несколько (более двух) разнородных реактивных элементов, то при изменении  частоты в ней могут наблюдаться несколько резонансных режимов (как тока, так и напряжения) в зависимости от структуры схемы.


На главную